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INTRODUCTION

This presentation explores advanced statistical 

methodologies in Defence T&E, focusing on optimising 

resources and decision-making.

Defence testing challenges.

•The need for adaptive methods.

•Future-facing methodologies: Bayesian Inference, AI, Sequential Testing.
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Challenges in Modern Defence T&E
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Testing Demand Resource Availability AI Adoption Intergration

Defence T&E Challenges

Demand Resources AI Adaptation

Excessive Testing 

Demand

Resource Constraints 

and Backlogs

Traditional Methods Vs 

Progressive Innovation

Slow Adaptation to AI and 

Modern Techniques
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Adaptive Statistical Frameworks 

BINOMIAL SAMPLING BAYESIAN INFERENCE

Strengths and weaknesses in defect 

detection.

Updating probabilities as new data is 

gathered.

STRATIFIED SAMPLING with FPC SEQUENTIAL TESTING

The benefit of dividing populations into 

subgroups for improved precision.

Iterative testing to reduce sample size and 

testing time

4



BINOMIAL SAMPLING 

𝒏 =  
𝒁𝟐 𝒑 𝟏 −  𝒑

𝑬𝟐
𝒏𝒂𝒅𝒋 =  𝒏

𝒏

𝟏 +
𝒏 − 𝟏

𝑵
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Binary outcomes: Pass or Fail.

Sample Size 

Determined

Test Each 

Item
Pass or Fail



BINOMIAL SAMPLING
𝑛 =

𝑍2𝑝 1 − 𝑝

𝐸2
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Sample Size

n = 384.16

Z = Z-Value 1.96

p = 0.50

E = 0.05

Binomial sampling Single LOT

LOT/Serial Number Stock Balance
Binomial Sampling (Rounded)

Mech Parts 1 1600 384.16

Population N total 1600
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a

ADVANCED BINOMIAL SAMPLING: 

INTEGRATING STRATIFIED SAMPLING WITH 

FPC

LOT/Serial Number
Stock 

Balance

Binomial Sampling 
(Rounded)

Binomial Proportion 
Adjusted (FPC)

Mech Parts 1 1600 78 74

Mech Parts 2 1323 64 61

Mech Parts 3 1188 58 55

Mech Parts 4 385 19 18

Mech Parts 5 1123 55 52

Mech Parts 6 265 13 12

Mech Parts 7 923 45 43

Mech Parts 8 301 15 14

Mech Parts 9 759 37 35

Mech Parts 10 31 2 1

Population N total 7898 386 365𝑛𝑎𝑑𝑗
𝑖 =

𝑛
𝑁𝑖

𝑁𝑡𝑜𝑡𝑎𝑙

1 +
𝑛

𝑁𝑖
𝑁𝑡𝑜𝑡𝑎𝑙

− 1

𝑁𝑖
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Definition
AQL defines the maximum percentage of defective items acceptable in a batch.

Key Use
Ensures quality control without testing 100% of items.

Why It Matters
Balances quality with efficient resource use.

What is Acceptance Quality Level (AQL)
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ADVANCED BINOMIAL SAMPLING: INTEGRATING 

STRATIFIED SAMPLING WITH FPC

LOT/Serial Number
Stock 

Balance

Binomial Sampling 
(Rounded)

Binomial Proportion 
Adjusted (FPC)

Mech Parts 1 1600 78 74

Mech Parts 2 1323 64 61

Mech Parts 3 1188 58 55

Mech Parts 4 385 19 18

Mech Parts 5 1123 55 52

Mech Parts 6 265 13 12

Mech Parts 7 923 45 43

Mech Parts 8 301 15 14

Mech Parts 9 759 37 35

Mech Parts 10 31 2 1

Population N total 7898 386 365

This approach combines stratified sampling with Finite Population Correction (FPC) to enhance 

testing accuracy and efficiency in defence applications. By stratifying the population into more 

homogeneous subgroups and applying FPC, we significantly improve the representativeness 

and precision of our sample estimates, which is crucial in environments where resources are 

limited and testing is destructive.

𝑛𝑎𝑑𝑗
𝑖 =

𝑛
𝑁𝑖

𝑁𝑡𝑜𝑡𝑎𝑙

1 +
𝑛

𝑁𝑖
𝑁𝑡𝑜𝑡𝑎𝑙

− 1

𝑁𝑖

LOT/Serial 

Number

Stock 

Balance
AQL (%)

AQL-based 

binomial 

sampling

Allowable 

Defects

Mech Parts 1 1600 1.5 23 0

Mech Parts 2 1323 2.0 30 1

Mech Parts 3 1188 1.8 27 0

Mech Parts 4 385 1.6 24 0

Mech Parts 5 1123 1.5 23 0

Mech Parts 6 265 2.0 30 1

Mech Parts 7 923 1.7 26 0

Mech Parts 8 301 1.5 23 0

Mech Parts 9 759 1.5 23 0

Mech Parts 10 31 2.0 30 0

Population N total
7898

259

Mechanics of AQL in Testing

n = 384.16

n_adj = 365.00

AQL = 259
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ADVANCED BINOMIAL SAMPLING: INTEGRATING 

STRATIFIED SAMPLING WITH FPC

LOT/Serial Number
Stock 

Balance

Binomial Sampling 
(Rounded)

Binomial Proportion 
Adjusted (FPC)

Mech Parts 1 1600 78 74

Mech Parts 2 1323 64 61

Mech Parts 3 1188 58 55

Mech Parts 4 385 19 18

Mech Parts 5 1123 55 52

Mech Parts 6 265 13 12

Mech Parts 7 923 45 43

Mech Parts 8 301 15 14

Mech Parts 9 759 37 35

Mech Parts 10 31 2 1

Population N total 7898 386 365

This approach combines stratified sampling with Finite Population Correction (FPC) to enhance 

testing accuracy and efficiency in defence applications. By stratifying the population into more 

homogeneous subgroups and applying FPC, we significantly improve the representativeness 

and precision of our sample estimates, which is crucial in environments where resources are 

limited and testing is destructive.

𝑛𝑎𝑑𝑗
𝑖 =

𝑛
𝑁𝑖

𝑁𝑡𝑜𝑡𝑎𝑙

1 +
𝑛

𝑁𝑖
𝑁𝑡𝑜𝑡𝑎𝑙

− 1

𝑁𝑖

Advanced AQL Mechanics: Incorporating Stratified 

Sampling
Sampling Plan:

LOT/Serial 

Number

Stock 

Balance
AQL (%)

AQL-based 

binomial 

sampling

FPC 

Adjusted

Stratified 

Adjusted

Defects 

Allowed

Mech Parts 1 1600 1.5 23 23 5 0

Mech Parts 2 1323 2.0 30 29 5 1

Mech Parts 3 1188 1.8 27 26 4 0

Mech Parts 4 385 1.6 24 23 1 0

Mech Parts 5 1123 1.5 23 23 3 0

Mech Parts 6 265 2.0 30 27 1 1

Mech Parts 7 923 1.7 26 25 3 0

Mech Parts 8 301 1.5 23 21 1 0

Mech Parts 9 759 1.5 23 22 2 0

Mech Parts 10 31 2.0 30 16 0 1

Population N 

total
7898

259 235 25
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BAYESIAN INFERENCE

AND

SEQUENTIAL SAMPLING 

P(𝐻|𝐸)  =
𝑃(𝐸|𝐻) 𝑃(𝐻)

𝑃(𝐸)
      𝛬𝑛 =  

𝑃(𝑑𝑎𝑡𝑎 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 𝑠𝑜 𝑓𝑎𝑟|𝐻1)

𝑃(𝑑𝑎𝑡𝑎 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 𝑠𝑜 𝑓𝑎𝑟|𝐻0)
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WHAT IS BAYESIAN INFERENCE

Bayesian inference updates probabilities based on new data.

P(𝐻|𝐸)  =
𝑃(𝐸|𝐻) 𝑃(𝐻)

𝑃(𝐸)

P(H|E): Posterior Probability (updated belief)  

P(E|H): Likelihood (evidence given the hypothesis)

P(H): Prior Probability (initial belief) 

P(E): is the marginal likelihood, the total probability of the 

evidence.
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Impact of Prior Probabilities on Bayesian Updates
Stock 

Balance

Prior 

Probability

Fail Log - Likelihood Posterior 

Probability

1600 0.50 2 -23.4803396618 3.17386E-11

1323 0.50 2 -19.2659197225 2.14727E-09

1188 0.50 3 -17.4597397485 1.30708E-08

385 0.50 0 -5.7195699176 0.001640561

Stock 

Balance

Prior 

Probability

Fail Log - Likelihood Posterior 

Probability

1600 0.10 2 -5.4775692826 0.000417948

1323 0.10 2 -4.8369644148 0.000793109

1188 0.10 3 -5.5166619808 0.000401924

385 0.10 0 -0.8693923207 0.041920621
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Sequential Testing in Practical Applications

𝛬𝑛 =  
𝑃(𝑑𝑎𝑡𝑎 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 𝑠𝑜 𝑓𝑎𝑟|𝐻1)

𝑃(𝑑𝑎𝑡𝑎 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 𝑠𝑜 𝑓𝑎𝑟|𝐻0)

Sequential testing allows us to make real-time decisions with fewer samples, 

enhancing efficiency and saving resources..

Likelihood: The probability of observing the test results under a specific hypothesis.

Cumulative Failures: Total failures observed during the testing process.

Cumulative Likelihood: Sum of probabilities indicating the progression towards a 

decision.

Decision Threshold: Predefined criteria that determine when the testing stops. 
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Sequential Testing in Practical Applications

Sequential Testing

Likelihood Test Stage Cumulative Failures Cumulative Likelihood Decision Threshold

0.009999679 1.010049843 2 0.009999679 Continue

0.029344459 1.029779251 2 0.039344138 Continue

0.093902606 1.098452758 3 0.133246744 Continue

0.135085172 1.144634271 0 0.268331916 Continue

0.018597656 1.018771669 1 0.286929571 Continue

0.254186583 1.289412364 0 0.541116154 Continue

0.008727964 1.008766163 0 0.549844118 Continue

0.343151887 1.409382812 1 0.892996005 Continue

0.083355078 1.086927684 1 0.976351083 Stop

0.81 2.247907987 0 1.786351083 Stop
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AI-Enhanced Sampling - Modern Approach

(General Overview)
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•Optimisation of Sample Size

•Real-time Bayesian Updating

•AI-Assisted Stratified Sampling

•Pattern Recognition in Defect Detection

•Predictive Modelling for Defect Rates

•AI-Driven Sequential Testing

•Digital Twins and Simulation 



AI-Enhanced Sampling - Modern Approach 

(Key Benefits)
• AI integrates automation and predictive analytics into sampling strategies.

• Optimises test plans based on real-time data patterns and risk profiles.

• Enables dynamic adaptation to changing testing conditions.

Key Benefits:

• Reduces manual intervention and accelerates decision-making.

• Predicts failure patterns and prioritises critical areas for testing.
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CONCLUSION
Traditional methods like Binomial Sampling are resource-intensive for complex systems.

Adaptive methodologies (Bayesian, Sequential) reduce sample sizes and improve efficiency.

AI-Enhanced Strategies provide a flexible, data-driven approach for Defence T&E.

Recommendations:

– Implement a hybrid framework combining Bayesian and AI methodologies.

– Use Sequential Testing for high-risk, resource-sensitive environments.

Sampling Method Sample Size Decision Time Resource Intensity Key Strengths Key Limitations

Binomial Sampling
Large (proportional to 

population size)

Fixed, all samples must be 

tested

High (particularly for 

destructive testing)

Straightforward, well-

established methodology

Resource-intensive, not 

suitable for small 

populations or destructive 

testing

Bayesian Inference

Adaptive, can start with a 

smaller sample and adjust 

as data is collected

Continuous, decisions can 

be made as more data 

comes in

Lower

Incorporates prior 

knowledge and real-time 

updates

May require more 

computational effort (if 

done manually)

Sequential Testing 

(SPRT)

Minimal, testing stops as 

soon as criteria are met

Early, testing stops when 

pass/fail criteria are met
Lower

Early decision-making, 

fewer samples required

More complex to set up 

and interpret

AI-Enhanced Sampling

Optimised in real-time 

based on predictive 

analytics

Dynamic, highly efficient

Very Low (automation 

reduces human 

intervention)

Predicts failure patterns 

and adapts to changing 

conditions

Initial setup for AI might 

require investment
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