

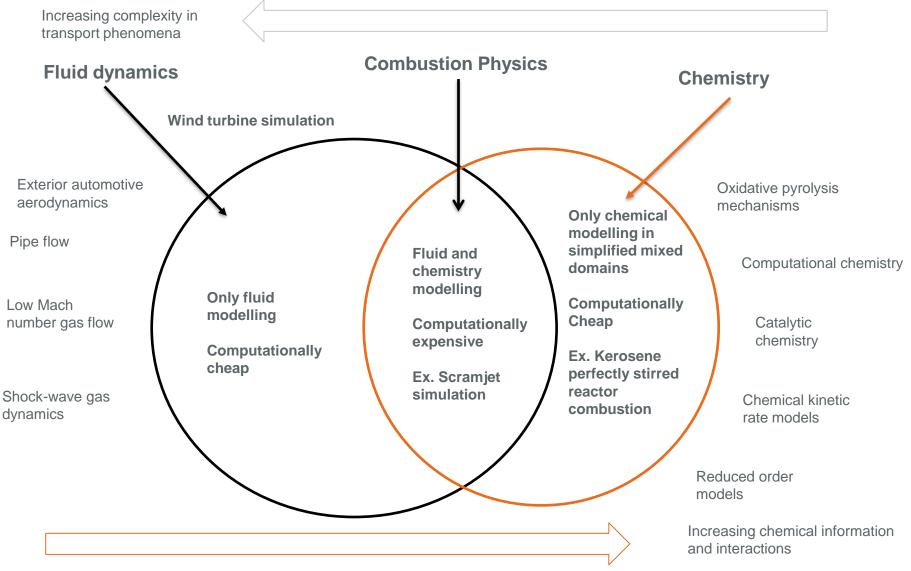
Australian Government

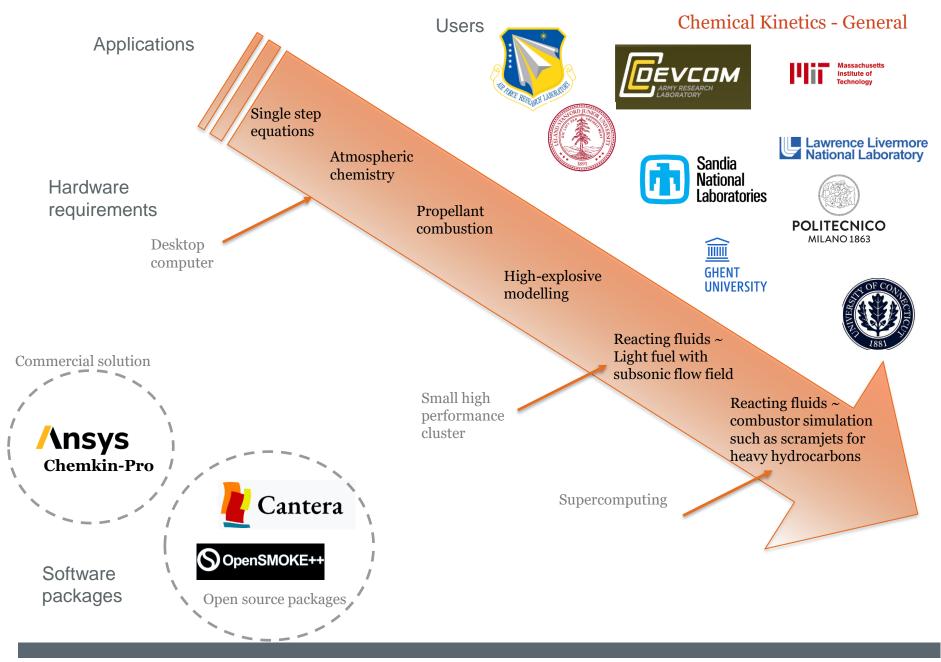
Department of Defence Guided Weapons and **Explosive Ordnance Group**

A Case for Chemical Kinetics in **Explosives Ordnance Engineering**

R. Mazumdar, PARARI 2024

Energetic Materiel and Lifing Desk Officer Directorate of Engineering, GWEO Systems Division


What is the need?


- Working with limited data sets to inform stabiliser depletion in single and double base munitions.
 - Small data-sets of stabiliser testing
 - Resource constrained for experimental testing
- Understanding the toxicity aspect of functioning propellants
 - Sovereign capability leading to increased domestic manufacture and proof testing.
 - Growing awareness of toxicity and impact on biological organisms.
- Developing processes to assist the performance difference between different potential propellant blends, or propellant substitution.
 - Agile munition base, substitution of suppliers
 - Accelerate engineering capacity for comparison

How can we bridge the knowledge gap?

Chemical Kinetics - General

Can chemical kinetics bridge the gap?

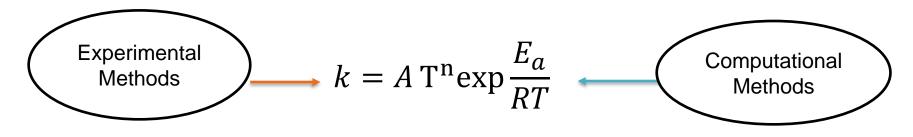
Chemical Kinetics Background: Reaction Types

Unimolecular reaction	$[A] \to [B] + [C]$	(1)
Bimolecular reaction	$[A] + [B] \rightarrow [C] + [D]$	(2)
Re-combination reaction	$[A] + [B] + [M] \rightarrow [AB] + [M]$	(3)

Elementary reactions used to describe various chemical pathways in a energetic material or fuel. These elementary reactions can then be expressed as some form or chemical rate equation, where k is the rate constant.

Unimolecular rate of consumption

$$\frac{dA}{dt} = -k[A_0] \tag{4}$$


The rate constant is then expressed by variety of different mathematical relationships. These tend to have an exponential component, signifying the exponential relationship to increased temperature in driving forward reactions. There are a variety of other forms including fall-off reactions which allow for pressure dependence etc.

$$k = A \exp \frac{E_a}{RT}$$
(5)
$$k = A \operatorname{T^n} \exp \frac{E_a}{RT}$$
(6)

Arrhenius rate equation

Chemical Kinetics Background: Rate Formulation

How do we get these rate values for the kinetic equation?

- Shock-tube studies for high temperature rates
- Spectrophotometry
- Plug flow reactors
- Laminar flame speeds
- Mass spectrometry
- Gas chromatography

Do I need to worry about the rate values?

• Density functional theory

Chemical Kinetics Background: Mechanism Development

Table 1. Chemical Kinetic Mechanisms

No.	Document Title	Date	Mechanism Type	Composition	Application
1	Modeling of smokeless powders shelf life using results of multi-temperature study on stabilizer consumption	2021	One-Step Reaction Scheme	Single base	Stabiliser depletion
2	Prediction of In-Service Time Period of Three Differently Stabilized Single Base Propellants	2009	One-Step Reaction Scheme	Single base	Stabiliser depletion
3	Detailed Combustion Modeling as an Aid to Propellant Formulation: Two New Strategies	2000	177- Reactions	Nitro-glycerine	Gas-Phase Combustion
4	A Chemically Specific Burning Rate Predictor Model for Energetic Materials	2001	35-Species, 178-Reactions	RDX and Nitroglycerine	Gas-Phase Combustion
5	CYCLOPS, A Breakthrough Code to Predict Solid- Propellant Burning Rates	2003	59-Species, 365-Reactions	Nitrocellulose and Nitroglycerine (double base)	Gas-Phase Combustion
6	A skeletal, gas-phase, finite-rate, chemical kinetics mechanism for modeling the deflagration of ammonium perchlorate—hydroxyl terminated polybutadiene composite propellants	2016	81-Species, 100-Reactions	АР-НТРВ	Gas-Phase Combustion
7	A kinetic model for the premixed combustion of a fine AP/HTPB composite propellant	1998	39-Species, 72-Reactions	AP-HTPB	Condensed phase and Gas-Phase Combustion
8	Modeling of HMX/GAP pseudo-propellant combustion	2002	19-Species, 10-Reactions	HMX	Condensed phase pyrolysis
9	An eigenvalue method for computing the burning rates of HMX propellants	1998	3-Global Reactions	HMX	Liquid phase pyrolysis
10	RDX/GAP Pseudo-Propellant Combustion Modelling		4-Global Reactions, 83-Species, 534-Reactions	RDX-GAP	Condensed phase and Gas- Phase Combustion
11	A detailed chemical kinetic model for gas phase combustion of TNT	2007		TNT	Gas-Phase Combustion
12	Detailed kinetic mechanism for nitrocellulose low temperature decomposition	2023	62-Species, 803-Reactions	Nitrocellulose (NC)	Gas-Phase Combustion
13	High-Temperature Combustion Reaction Model of H 2/CO/C 1–C 4 Compounds	2007	111-Species, 784-Reactions	C2H4	Gas-Phase Combustion
14	Low-and intermediate-temperature ammonia/hydrogen oxidation in a flow reactor: Experiments and a wide-range kinetic modeling	2023	31-Species, 203-Reactions	NH3	Gas-Phase Combustion
15	High-temperature chemistry of HCl and Cl2	2015	25-Species, 103-Reactions	HCl and Cl2	Gas-Phase Combustion

Chemical Kinetics Background: Mechanism Development

What if the mechanism still does not exist?

*Liu, M., Grinberg Dana, A., Johnson, M. S., Goldman, M. J., Jocher, A., Payne, A. M., ... & Green, W. H. (2021). Reaction mechanism generator v3. 0: advances in automatic mechanism generation. *Journal of Chemical Information and Modeling*, *61*(6), 2686-2696.

OFFICIAL

Application 1: Stabiliser depletion Modelling

- Autocatalytic degradation of nitrocellulose (NC) has in part led to or contributed to a number of accidents,
 - 1981, ammunition magazine explodes in Zimbabwe [1].
 - 1994, an Indian magazine explodes [1].
 - 1996, 25 tonnes of ammunition functions in the Brazilian naval storage [1].
 - 1996, Red River in the united states has an ammunition storage function [1].
 - 1999, Finish bunker functions with 65 tonnes of ammunition [1].
 - 2000, Japanese propellant storage functions [1].
 - 2001, Indian munitions handling accident with nitrocellulose [1].
 - 2015, a large mass of nitrocellulose exploded in the Tianjin port in China. The cited mechanism for said explosion was the loss of the storage medium for which the nitrocellulose would have been handled and storied under [2].

[1]de Klerk, W. P. (2015). Assessment of stability of propellants and safe lifetimes. Propellants, Explosives, Pyrotechnics, 40(3), 388-393.

[2] Liu, C., Zhu, S., Wu, J., Tao, L., & Wang, W. (2020, September). Study on the spontaneous combustion risk and thermal decomposition characteristics of nitrocellulose. In *IOP Conference Series: Earth and Environmental Science* (Vol. 565, No. 1, p. 012110). IOP Publishing.

Application 1: Stabiliser Depletion Modelling

Nitrate-ester (NE) initial pyrolysis	$NE \rightarrow P + R$		(1)
Nitrate-ester autocatalytic reaction	$NE + P \rightarrow 2P + R$		(2)
Stabiliser reaction	$S + P \rightarrow P - S$		(3)
	$\frac{dS}{dt} = -k$	Zero-order	(10)
Stabiliser reaction rate equations	$\frac{dS}{dt} = -k.S(t)$	First-order	(12)
	$\frac{dS}{dt} = -k.S(t)^n$	nth-order	(13)
	$\frac{dS}{dt} = -k_1 \cdot S(t)^n - k_0$	Linear + exponential	(14)

Application 1: Stabiliser Depletion Modelling

• N-th order

• Linear + exponential

$$S = \left[1 - (1 - n)Ae^{-\frac{E_a}{RT}}\right]^{\frac{1}{1 - n}}$$

$$S = \left(S_o + \frac{k_o}{k_1}\right) \cdot e^{-k_1 t} - \frac{k_o}{k_1}$$

$$k_o = A_o e^{-\frac{E_o}{RT}}$$
$$k_1 = A_1 e^{-\frac{E_1}{RT}}$$

 Table 2. Values fitted for DPA consumption only for varying propellant blends

 *
 A in units of 1/s, time in secondas

 **
 Values for ko, A in units of 1/days, time in days

Sample	Model order	Propellant	Ea (kJ/mol)	N (-)	А	Ref
A	Nth-order	Single base 7.62 x 54R propellant with 9.32% DPA and 0.45% NO-DPA	131.6	0.94	1.91.10 ^{14*}	[1]
В	Nth-order	Single base 12.7 x 107 propellant with 0.93% DPA and 0.37% NO-DPA	92.8	1.06	7.72.10 ⁷	[1]
C-1	Nth-order	Single base with 0.74% DPA and 0.48% DPa.	135.5	0.656	9.49.10 ¹⁸	[2]
(C-2	Linear + exponential	Single base with 0.74% DPA and 0.48% DPa.	210.8**	-	1.24.10 ^{29**}	[2]
			114.2***	-	6.22.10 ^{15***}	[2]

[1] Krejčíř, F., Adam, J., & Buldra, R. (2021, June). Modeling of smokeless powders shelf life using results of multi-temperature study on stabilizer consumption. In 2021 International Conference on Military Technologies (ICMT) (pp. 1-6). IEEE.

[2] Bohn, M. A. (2009). Prediction of In-Service Time Period of Three Differently Stabilized Single Base Propellants. Propellants, Explosives, Pyrotechnics: An International Journal Dealing with Scientific and Technological Aspects of Energetic Materials, 34(3), 252-266.

OFFICIAL

Application 1: Stabiliser Depletion Modelling

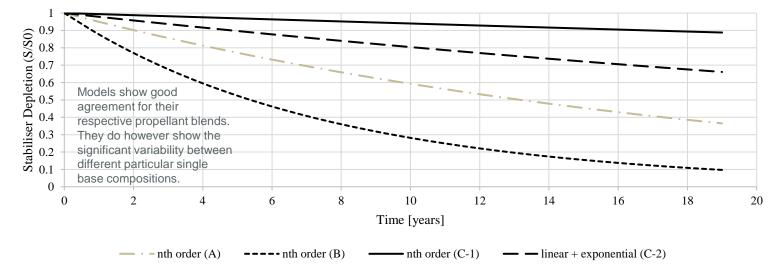
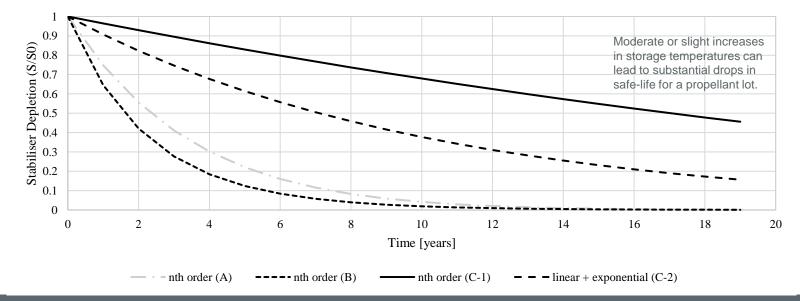



Figure 1 DPA stabiliser depletion models for different single base propellants at 25 degrees' Celsius storage

Figure 2 DPA stabiliser depletion models for different single base propellants at 35 degrees' Celsius storage

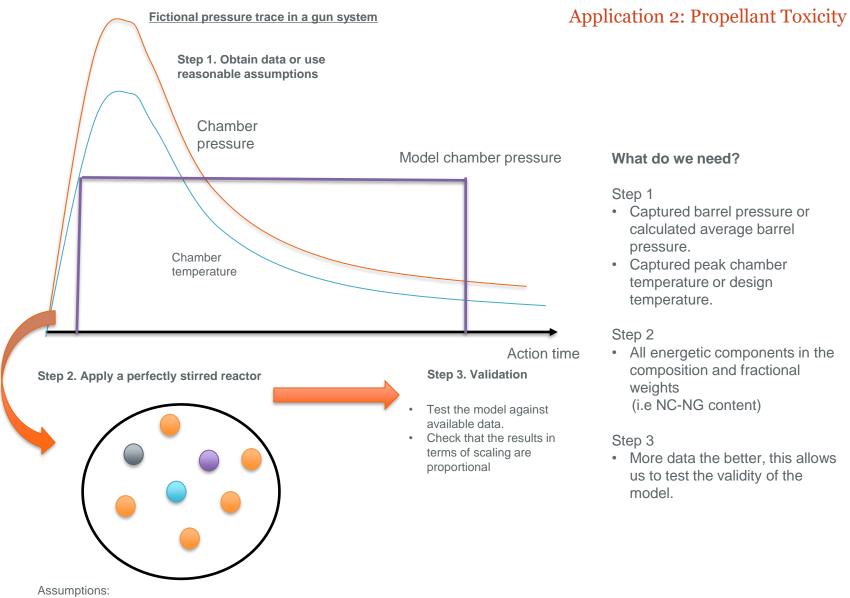
Application 2: Propellant Toxicity

- Reasons for environmental and personnel exposure
 - Increased domestic testing, proof testing and surveillance activities
 - New gun system design and inclusion of muzzle breaks
 - Operating in enclosed environments
 - Increasing or sustained usage of a product with personnel, such as increased training and duration
- Examples of different toxic products

Ashpyxiants	Carbon Dioxide	Chlorine	Hydrogen Cyanide	
	CO2	Cl2	HCN	
Irritant Gases	Hydrogen Chloride	Sulphur Dioxide	e Nitrogen Dioxide	
	HCL	SO2	NO2	
Inorganic irritants	Ammonia Hydrogen Chloride NH3 HCL		oride Phosgene COCl2	
Isocyanates	Methyl isocyanate C2H3NO			

Application 2: Propellant Toxicity

Toxicity


Table 3. Toxicity Products [1]

STEL – Short term exposure limit defined at 15 minutes duration STID – Short term irreversible damage at 10 minutes duration

Chemical component	STEL [ppm]	STID [ppm]	Normalised risk coefficient		
	Chemical A	Asphyxiant			
HCN	10	17	24.71		
<i>CO</i> ₂	15000	-			
СО	200	420	1		
	Irritant	Gases			
HCL		100	4.2		
HBr		100	4.2		
HF		95	4.42		
SO_2		0.75	560		
NO ₂		20	21		
Inorganic irritants					
Ammonia, NH ₃	35	220	1.91		
Chlorine, Cl ₂	1	2.8	150		
Phosgene,	0.06	0.6	700		
COCl ₂					
Isocyanates					
Methyl		0.4	1050		
isocyanate					

[1] Wakefield, J. C. (2010). A toxicological review of the products of combustion. Chilton, UK: Health Protection Agency, Centre for Radiation, Chemical and Environmental Hazards, Chemical Hazards and Poisons Division.

OFFICIAL

- Assume 80% goes to gaseous species for example.
- Internal chamber temperature is reasonably close to theoretical flame temperature.
- Frozen flow for expansion of gas products out of the chamber barrel or system enclosure.

Application 2: Propellant Toxicity

- What do we do with this initial data from a chemical kinetic model or benchtop study?
 - Use initial modelling data to focus in on potentially hazardous culprits in the experimental validation.
 - Modelling helps identify specific key species of interest.
 - Chemical mechanisms for single and double base gas phase combustion exist.
 - Computationally speaking this could all be conducted on a desktop computer.

Application 3: Solid motor and propellant internal modelling

- Changing suppliers how does the performance compare? What are the changes in burn rates?
- Chemical kinetics could be used to:
 - Model different compositions in idealised environments to compare theoretical burn rates. Such as RDX-HTPB vs HMX-HTPB solid motors.
 - Tolerance or defect modelling for items which may yield higher burning surface area.
 - Provide early scoping of general technical requirements, and ascertaining theoretical compositional requirements for end product use.

Application 3: Solid motor internal modelling

 Combustion of our spherical propellant, cast-composite rocket
 Complex phenomena

 Solid layer
 Foam or liquid multiphase layer

AP-HTPB

NC-NG

RDX-HTPB

We can simply the problem itself by using the following approach

To bridge the gap, an appropriate model for describing pyrolysis and proliferation of the condensed or gas phase chemical species must be implemented.

 $\dot{m} = f(A_b, T_s, P_c)$

$$\dot{m} = A_s \exp{-\frac{E_a}{RT_s}}$$

Complex and more difficult process to solve, and is system dependant

Semi-empirical global kinetic equations which connect liquidcondensed phase to a more robust gas phase.

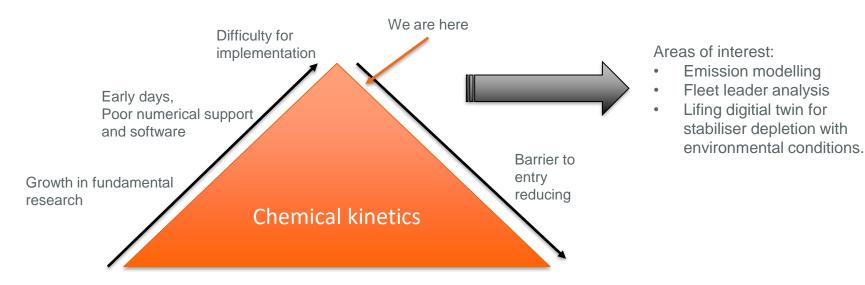
 $RDX \rightarrow 3H_2CN + 3NO_2$

 $DX \rightarrow 5H_2CW +$

 C_2H_4

Intermediate C-C chemistry

Detailed hydrocarbon or base gas-phase mechanism


```
CH_3^* OH^* H^*
```

Radical chemistry

Summary

Chemical kinetics:

- Developing internal tools can maximise engineering outputs, new capabilities.
- Progress in the direction of a smart consumer and user of energetics.
- The tools are readily available, mechanisms generated, and the hardware is easily accessible.

• Questions ?