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Introduction

• Hazards of Electromagnetic Radiation to Ordnance (HERO) are 
commonly associated with electro-explosive devices (EEDs) and the 
heating that occurs at the ‘bridge’.

• The bridge heating effect is potentially of less concern as frequency 
increases.

• Concerns have been raised about the bulk heating of energetic 
materials.

• At certain frequencies the bulk heating effect becomes a greater 
concern potentially, when compared to bridge heating effects in EEDs.
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Interoperability 

• Definition: “…the ability to routinely act together coherently, effectively 
and efficiently to achieve tactical, operational and strategic objectives.”

Interoperability Activities: “…defined as any initiative, forum, 
agreement, or operation that improves the ability to operate effectively 
and efficiently as a component of the joint force and as a member or 
leader of an alliance or coalition across the range of military operations.”

Reference: https://www.army.mil/article/231653/interoperability_embrace_it_or_fail

• Inadvertent initiation of an EED, or bulk energetic materials will 
inevitably have consequences that will affect the ADF’s interoperability 
objective.

https://www.army.mil/article/231653/interoperability_embrace_it_or_fail
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EED Construction
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Worst-case RF ‘Pick-up’ Trace 

• The antenna effective area (Ae) can be written in terms of the antenna’s gain 
factor (G) and the wavelength (λ) of the incident signal as follows:

• Ae represents the area of the incident 

wavefront that is ‘captured’ by the receive 

antenna. 

• The power received by the antenna can be 

expressed in terms of the incident power 

flux density (S) as follows:  

𝑃𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 = 𝑆 𝐴𝑒

𝐴𝑒 =
λ2

4𝜋
𝐺

𝑆 = 𝑃𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

4𝜋

𝐺λ2
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Worst-case RF Pick-up Trace (with Preceived = 1 W)

• For a dipole that is resonant at 2GHz, λ = 0.15m.

• For Preceived = 1W and the antenna gain equal to 1.64 (for a dipole), the power 

density needs to be: 

𝑆 = 𝑃𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

4𝜋

𝐺λ2

= 1
4𝜋

1.64 0.15 2

= 340.55W/𝑚2

• The field strength of the incident EM wave is:

𝐸𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 = 𝑆 × 377

= 340.55 (377)
= 358.31𝑉/𝑚
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RF Susceptibility Trace of 2 GHz, λ/2 dipole | Preceived = 1W (0dB margin)  
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The Thermal Time Constant• The response of a bridgewire 

(BW) EED to a step input (i.e. 

electrical stimulus) is 

characterised by an 

exponential rise in 

temperature. 

• The thermal time constant (𝜏) 

is the time it takes for the BW 

EED to reach 63% of its 

equilibrium temperature.

• If the stimulus pulse width is 

long enough (5𝜏, in this case), 

the EED has the potential to 

reach the temperature 

equilibrium.
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Thermal Time Constant - Continued

• If the stimulus amplitude is 

high enough, initiation of the 

EED will occur as the 

temperature equilibrium is 

approached (or some time 

after).   

thermal response
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Thermal Time Constant - Continued
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Thermal Stacking

• A  bridgewire’s temperature 

may increase incrementally 

(or ‘stack’) when there is 

insufficient time between 

stimulus (i.e. radar) pulses 

for the bridgewire to cool 

down.

• If, however, T >> 5𝜏 thermal 

stacking will not occur 

(Source: Survey of Electro-

explosive devices, Clarkson 

College of Technology, 

January 1977)  
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Thermal Stacking

• Assume that a bridge temperature θ1 is reached after the first pulse. 
The bridge temperature θN, after N pulses is as follows:

𝜃𝑁 = 𝜃1
1−𝑒

−𝑁𝑇
𝜏

1−𝑒
−𝑇

𝜏

            (1)

T is the pulse period and 𝜏 is the EED’s thermal time constant.

Reference: Franklin Applied Physics EED Course, 31 Jul 2014  

• Eq. (1) can be rewritten as follows to determine N:

𝑁 = −
𝜏

𝑇
𝑙𝑛 1 +

𝜃𝑁

𝜃1
𝑒

−𝑇

𝜏 − 1         (2)
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Example

• Common primer mixes, such as NOL-130, are made up of 40% basic 
lead styphnate, 20% lead azide, 20% barium nitrate, 15% antimony 
sulphide and 5% tetrazene. Its temperature of ignition is reported to 
occur at 240ºC.

• With 𝜏 = 1ms, T = 0.5ms, θ1 = 95ºC and the ignition temperature of 
NOL-130 being 240ºC:

References: (1) M. Maksacheff, D.J. Whelan, DSTO Report MRL-R-1000, Thermochemistry of Normal and Basic Lead Styphnates using Differential Scanning Calorimetry of 

May 86, (2) A. Gash Et. Al., Environmentally Benign Stab Detonators, UCRL-TR-201628 of 29 Dec 03

𝑁 = −
𝜏

𝑇
𝑙𝑛 1 +

𝜃𝑁

𝜃1
𝑒

−𝑇
𝜏 − 1 =

−1

0.5
𝑙𝑛 1 +

240

95
𝑒

−0.5
1 − 1 = 10.24 → 11 pulses

Notice that the pulse period T is < 𝜏  
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A Newly Identified Issue

DEMOLIT
IO

N C
HARGE 

• At some frequencies, the bulk heating of energetic 

materials may be of greater concern when 

compared to the EED bridge heating effect. 

• Heating and initiation of non-electric 

EO now a concern as well.
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HERO Incident – Non-electric Pyrotechnic Devices

• 2013 incident involving the radar of a USN DDG Destroyer.

• Non-electric signal flares and distress signal devices were initiated 
during a replenishment activity.

• The radar was not sector-
blanked, nor was it set to 
low-power mode, when it 
radiated the items on a 
Rigid-Hulled Inflatable Boat 
(RHIB) on the adjacent 
supply ship.

Reference: C. Denham, HERO Capability Gap within NATO, 

MSIAC Steering Committee Presentation of Oct 17
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Bulk Heating of Energetic Materials

• Microwave heating – a common industry application.

• What influences energetic heating in the presence of strong 
electromagnetic fields?

• Fine metal powders are susceptible to aggressive heating under the 
right circumstances.

• Case materials influence the penetration of said microwave emissions 
into materials.

• Of particular concern is the scenario where bulk energetic materials 
are not effectively shielded by a conductive enclosure. 
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Bulk Heating of Energetic Materials - continued

𝑑𝑇

𝑑𝑡
=

2𝜋𝑓(𝜀𝑒𝑓𝑓𝜀0)𝐸𝑟𝑚𝑠
2  

𝜌𝐶𝑝

𝑃 = 2𝜋𝑓(𝜀𝑒𝑓𝑓𝜀𝑜)𝐸𝑟𝑚𝑠
2  

• Microwave heating in the material 

can be represented in the general 

form.

• Considering generally non-conductive materials, the 

equation can be simplified. This assumption holds 

part of the time, but is a safe assumption for particular 

high-explosive compositions.

• Substitute power for material heating with P ~
𝜌𝐶𝑝𝑑𝑇

𝑑𝑡
, 

which assumes no heat loss from the material. 

• This yields an equation that is intuitive to understand 

microwave heating in a material. 

𝑃 = 2𝜋𝑓(𝜀𝑒𝑓𝑓𝜀𝑜)𝐸𝑟𝑚𝑠
2 + 2𝜋𝑓𝜇0𝜇′′𝐻𝑟𝑚𝑠

2
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(Energetic) Material Properties 

Dielectric constant

Dielectric loss factor, 

Tangent loss

Frequency (Hz)

Dielectric Value  

* Material values measured or calculated at ≈ 2.5GHz 

Radio Waves and microwaves

1014~1011
Visible spectrum

1015
X-rays 

1018

Infrared 

1013

Material Type
Density 

[kg/m^3]

Heating 

Capacity 

[J/kg.k]

Permittivity 

e'

Dielectric loss 

factor e''

Al Inert metal 2941 900 1 2.78

Fe Inert metal 4935 650 5000 10

ABS Thermoplastic with Cu 

powder (35% vol)
Inert polymer 1070 1680 14.43 0.29

ABS Thermoplastic with Carbon 

fibres (15% vol)
Inert polymer 1070 1680 8.33 0.46

ABS Thermoplastic with carbon 

black (20% wt)
Inert polymer 1070 1680 10.45 3.75

Viton A Inert polymer 1850 1670 2.5 0.09

Kel-F Inert polymer 2130 900 2.3 0.02

Composite (case) Inert 1875 1260 5.83 6.9

AP propellant Propellant 1750 1200 5.83 0.228

TNT High explosive 1590 1125 3 0.01

Comp B High explosive 1730 1065 3.4 0.01

PETN High explosive 1780 1090 3 0.02

HMX High explosive 1630 1013 3.4 0.02

TATB High explosive 1860 1005 4.5 0.01

PBX 9501 (95% HMX, 2.5 

Estane, 2.5% Nitroplasticizer) High explosive 
1820 995.8

3.7 0.04

PBXN-5 (95% HMX, 5% Viton A) High explosive 1850 995.8 3.6 0.02

Dielectric values of materials are dependent on 

the frequency of incident microwave frequency.
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Metallic Powders
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Heating Potential

• Using SPY-1 as 
example radar 
with Paverage = 58 
kW, Gain Factor 
= 9300
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𝑑𝑇

𝑑𝑡
=

2𝜋𝑓(𝜀𝑒𝑓𝑓𝜀0)𝐸𝑟𝑚𝑠
2  

𝜌𝐶𝑝
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Risk Factors

Pyrotechnics Cast Composite Propellants High Explosives

• Limited damage.

• High susceptibility to 

microwave heating.

• High powder metal 

content represents a 

risk.

• Substantial damage

• Moderate susceptibility to 

microwave heating.

• Composite cases with no 

metallic material embedded 

provides little to no shielding.

• Catastrophic damage.

• Very low susceptibility 

to microwave heating.

• Generally shielded with 

metallic cases in an all-

up system.
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Special Case: X-raying of EO

• X-raying of EO treated as a special case, mainly because of operating 

frequencies of 1016 - 1020 Hz, which well exceed the frequencies where 

HERO is commonly of concern.

• Queries surrounding the safety of EO X-raying procedures remain.

• NAVSEA OP 3565 Vol 2, Rev 19 of 7 Jul 17 presents evidence of X-ray 

survivability testing of EO.

• Alludes to the potential ‘damage’ of explosives, depending upon the 

material properties and given sufficient X-ray radiation exposure time.

• Allows for X-ray dose < 1,400rads/minute, total dose <100,000 rads. 

• “No HERO problems are expected and explosives should remain safe 

and reliable”.
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Summary
• The thermal behaviour of EEDs are generally well-understood.

• With the introduction of radars with longer pulse widths, even bridgewire 

EEDs may be considered as pulse sensitive. There is also an increased 

risk of ‘thermal stacking’.

• Necessitates the need for more detailed assessments to contextualise the 

risks presented by specific RF emitters.

• At certain frequencies the bulk heating of energetic materials may be of 

greater concern than the bridge heating effect in EEDs.

• Basic equations may aid in predicting the heating potential in energetic 

materials due to particular RF emitters. 

• Of particular concern is the scenario where bulk energetic materials are 

not effectively shielded by a conductive enclosure. 
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Concluding Observations

• Joint Ordnance Test Procedure (JOTP)-062 covers personnel-borne 
and helicopter-borne electrostatic discharge testing, and already has 
an increased scope, which covers bare energetic materials and EO 
with or without EEDs. 

• Similarly, the future scope of HERO testing will likely change – to 
include EO with or without EEDs.

• Further research on this topic is essential, especially because of its 
potential impacts on the ADF’s interoperability objective. 
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Questions?
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Contact Details

  Thinus Neethling  FIEAust CPEng NER APEC Engineer IntPE(Aus) RPEQ, QinetiQ Fellow

  Electro-explosive Hazards Desk Officer / Subject Matter Expert 

  (Contractor to Defence: K39 Consulting)

  e-mail: marthinus.neethling@defence.gov.au

        

  Raoul Mazumdar  Energetic Materiel and Lifing Desk Office / Subject Matter Expert 

 (Contractor to Defence: Nova Systems)

 e-mail: raoul.mazumdar@defence.gov.au

        

mailto:marthinus.neethling@defence.gov.au
mailto:raoul.mazumdar@defence.gov.au

	Slide 1
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: Interoperability 
	Slide 5: EED Construction
	Slide 6: Worst-case RF ‘Pick-up’ Trace 
	Slide 7: Worst-case RF Pick-up Trace  (with Preceived = 1 W)
	Slide 8: RF Susceptibility Trace of 2 GHz, λ/2 dipole | Preceived = 1W (0dB margin)  
	Slide 9: The Thermal Time Constant
	Slide 10: Thermal Time Constant - Continued
	Slide 11: Thermal Time Constant - Continued
	Slide 12: Thermal Stacking
	Slide 13: Thermal Stacking
	Slide 14: Example
	Slide 15: A Newly Identified Issue
	Slide 16: HERO Incident – Non-electric Pyrotechnic Devices
	Slide 17: Bulk Heating of Energetic Materials
	Slide 18: Bulk Heating of Energetic Materials - continued
	Slide 19: (Energetic) Material Properties 
	Slide 20: Metallic Powders
	Slide 21: Heating Potential
	Slide 22: Risk Factors
	Slide 23: Special Case: X-raying of EO
	Slide 24: Summary
	Slide 25: Concluding Observations
	Slide 26: Questions?
	Slide 27: Contact Details

