

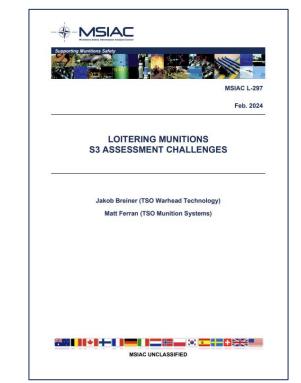
Supporting Munitions Safety

Safety considerations for drone-like munitions

PARARI 2024

Jakob Breiner TSO Warhead Technologies j.breiner@msiac.nato.int Matt Ferran TSO Munition Systems m.ferran@msiac.nato.int

08/11/2024



- Some background information
- Terminology and categorization
- Safety issues
- Airworthiness discussions
- Conclusion

Background information

- MSIAC Limited Report L-297 Loitering Munition S3 challenges was released in February 2024 exclusively to MSIAC nations
 - Approval to NATO and EDA granted
 - Distribution to non-MSIAC nations requires steering committee approval
- MSIAC nations gov. or industry can access the report via the MSIAC homepage

Background information

ギ

Supporting Munitions Safety

08/11/2024

https://turdef.com/article/ukraine-is-set-to-produce-one-million-fpv-drones-in-2024

https://interestingengineering.com/military/ukraine-drone-anti-tank-missile

Supporting Munitions Safety

Terminology and categorization

Loitering Munition (LM) Alignm **Op. Environments** to be considered: **Doctrine Purist Doctrine Ne** Air - A LM must destroy a target -- A LM must incapa Land Sea **Structure Purist** Subsea Space - A LM is single-use -A UVision HERO 120 is a LM A Honeybee is a loitering muniti seu-deleting message is a LM Structure Neutral - A LM delivers an effect -OC A crop duster is a LM A Home-Liquor delivery is a LM COVID vaccines are LM **Structure Radical** ALL DESCRIPTION DESCRIPTICON DE - A LM is anything that loiters in an area -Peaky Blinders are LM A satellite laser weapon is a LM Parents-in-law are LM

Terminology and categorization

Supporting Munitions Safety

- Definition of what a Loitering Munition is
 - NATO definition too vague
 - Variety of airborne systems already too large for a precise definition
 - o Mix of sea, subsea, land and air vehicles
 - Very close relationship to munition-dropping UAS
- MSIACs definition of airborne LM, adapted by NATO AC/326 and AC/225:

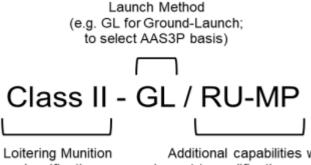
A Loitering munition is a lock-on-after-launch operated guided munition following a nonballistic and operator influenced trajectory and is capable of non/beyond line-of-sight target verification and precision attack, **which is destroyed by functioning of its payload**.

Covers all types of: Suicide-drones, kamikaze drone, single-way-attack-drones, ... **Does not cover:** Any drone that drops or launches a (modified) munition (i.e. Hand grenade)

Terminology and categorization

- No Loitering Munition categorization scheme exists; UAS schemes comparably coarse
 - Merged NATO/US DoD/EASA system suggested
- Matching with UAS airworthiness requirements
 - \circ No NATO standard for rotary wing < 150 kg ident.
 - STANAG 4703 / AEP-83 (fixed wing < 150 kg) utilizes elements from manned aircraft regulations
 - EASA Specific or Certified (= manned aircraft) category operation
 - Specific op. based on predefined missions or specific operations risk assessment (SORA) and the specific assurance integrity level (SAIL) of the UAS
 - Specific category is questionable if a warhead is involved
 - GBR and AUS Mil. UAS regulations reflect the EASA framework to large parts

	мтом	NATO	US DoD	EASA
6	< 0.25 kg	Class I Micro (max: 66J, 200 ft AGL)		Open / C0/1 (max. 120 m AGL; Alt. Specific)
	< 0.90 kg	Class I Micro (max. 66J, 200 ft AGL)	Group 1 (max. 100 kn / 1200 ft AGL)	
	< 4 kg	Class I Micro/Mini		Open / C2 (max. 120 m AGL; Alt. Specific)
	< 9 kg	Class I Mini		Open / C3 or C4 (max. 120 m AGL; Alt. Specific)
	< 15 kg	(max. 2000 ft AGL)	Group 2	
	< 25 kg	Class I Small	(max. 250 kn / 3500 ft AGL)	
	< 150 kg	(max. 5000 ft AGL)	Group 3 (max. 250 kn / 18.000 ft MSL)	Specific Category (Authorization by STS, PDRA, SORA, or LUC)
	< 600 kg	Class II (max. 18.000 ft AGL)		
	> 600 kg	Class III	Group 4 / 5	Certified Category

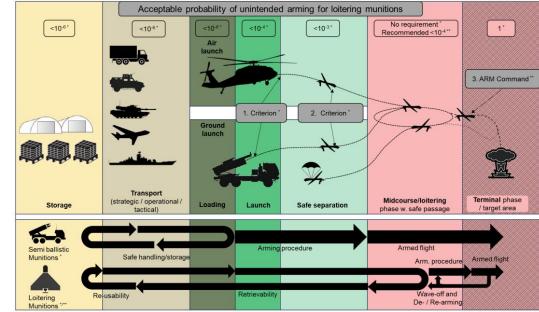

- Classification system based on merged UAS classes
 - Based on NATO, US DoD and EASA
 - $\circ \quad \text{Nano/Micro/Mini/small not to be mixed up} \\ \text{with NATO classes} \rightarrow \text{different MTOW} \\ \end{cases}$
 - No rotary wing LM > 15 kg identified !
- Recommended for NATO standardization by AC/225

LM class	мтом	Rec. max. op. alt.	Subcategory	Ref. UAS standard (adapted to LM)	Exemplary system
Class I	< 4 kg	300 m AGL	Fixed-Wing	DoD UAS/Group 1 [21] STANAG 4670/I Micro [20] STANAG 4703/AEP-83 [35] EASA specific/cert. [22]	Aerovironment Switchblade 300 [11]
Nano			Rotary-Wing		Raphael Spike Firefly [14]
Class I	4 – 9 kg	300 m AGL	Fixed-Wing	DoD UAS/Group 1 [21] STANAG 4670/I Mini [20] STANAG 4703/AEP-83 [35] EASA specific/cert. [22]	WB Warmate [4]
Micro			Rotary-Wing		IAI Rotem [24]
Class I	9 – 15 kg	1100 m AGL	Fixed-Wing	DoD UAS/Group 2 [21] STANAG 4670/I Mini [20] STANAG 4703/AEP-83 [35] EASA specific/cert. [22]	IAI Green Dragon [12]
Mini			Rotary-Wing		Diehl Libelle [5]
Class I	15 – 25 kg	1100 m AGL	Fixed-Wing	DoD UAS/Group 2 [21] STANAG 4670/I Small [20] STANAG 4703/AEP-83 [35] EASA specific/cert. [22]	UVision Hero 120 [3]
Small			Rotary-Wing		-
	25 – 150 kg	5500 m MSL	Fixed-Wing	DoD UAS/Group 2 [21] STANAG 4670/I Mini [20] STANAG 4703/AEP-83 [35] EASA specific/cert. [22]	Elbit Skystriker [7]
Class II			Rotary-Wing		-
Class III	150 – 600 kg	5500 m MSL	Fixed-Wing	DoD UAS/Group 3 [21] STANAG 4670/II [20] STANAG 4671 [34] EASA certified [22]	MBDA Fireshadow [6]
Class III			Rotary-Wing	DoD UAS/Group 3 [21] STANAG 4670/II [20] STANAG 4702/AEP-80 [36] EASA certified [22]	-

LM Report summary

- Introduction of a tag system
 - to identify S3 relevant capabilities
 - o Catalogue to be enhanced in the future

classification (based on MTOW / Operating altitude) Additional capabilities with impact to qualification program (e.g. RU for reusable, MP for modular payload)


Tag	Category	Description
ML	Launch	Man or hand launched system Apply AAS3P-10 (for soldier-mounted launch systems) or AAS3P-26 (for soldier-thrown/started systems; aft. promulgation)
GL	Launch	Ground, sea or underwater launched system (e.g., man-portable tube, or catapult launch); Apply AAS3P-11
VL	Launch	Vehicle launched system (ground/sea/underwater; e.g., vehicle tube launcher); Apply AAS3P-11
AL	Launch	Aircraft launched system (e.g., drop launch); Apply AAS3P-12
LC	Launch	Large-Caliber gun launched (>40 mm); Apply AAS3P-20
MC	Launch	Medium-Caliber gun launched (2040 mm); Apply AAS3P-21 (after promulgated)
SC	Launch	Small-Caliber gun launched (<20 mm); Apply AAS3P-22
RT	Capability	Retrievable; Fuzing safety for transport required
RU	Capability	Directly or indirectly reusable; Implies RT cap.; Hazard and reliability measures required
MP	Capability	Modular interchangeable payloads with non-destructive characteristics (e.g., Warhead replacement by additional battery); High probability of UAS-certification necessity
SP	Capability	Safe Passage capability; Fuzing safety for overflying own forces required
WO	Capability	Wave-off capability; Disarming and Rearming required
AT	Capability	Participation in Air-Traffic; High probability of UAS-certification necessity

- Loitering Munitions areas of safety concerns
 - \circ Fuzing
 - o Software, datalink and electronic warfare
 - Weapon system autonomy

- Fuzing safety merges with system safety and safe-separation plus safepassage challenges are very hard to meet with AOP-4187 conformal SAF units
 - AOP-67 not to be promulgated soon
 - Challenges can be met either by SAF sys. or safety crit. weapon computer which meets the requirements
 - Very few COTS systems provide sufficient fuzing / system safety

* Acc. to AOP-4187 Ed A, V 1, June 2022 ** Acc. to AOP-67 Ed A, V 1, Draft 13, Sept. 2023

- Software, datalinks and electronic warfare
 - LM are digital & networked and extremely prone to SW/HW robustness and EW
 - General robustness to be ensured by DO-178C+DO-254 or IEC 61508 or AOP-52+MIL-STD-882 system level qualification (or comparable) \rightarrow <u>Underestimated!</u>
 - Active electronic warfare hardening is crucial!
 - GPS jamming/spoofing is real (Example: JDAM in UKR > 30 m CEP)
 - Jamming of RC datalink is ludicrously easy
 - A civ. 10 km RC DL emits < 2 W of power, a R-330Zh jammer est. several kW
 - Back-up autonomy (i.e. steriliziation or safe-zone termination) required
 - Cyberattacks will for sure happen and sufficient countermeasures are necessary
 - Hardening of the RC (at least AES-256 encryption, GCS pairing, etc. mandatory)
 - RC Arming (AOP-67) enables cyberattacks to target the warhead! <u>Suitable AOP-4187</u> environmental criteria <u>required to prevent premature arming/detonation</u>.

- UAS / Weapon system autonomy
 - Full autonomy (lvl. 5, no human in the loop) is inacceptable
 - High level of autonomy by Human in or over the loop widely acceptable (semi-autonomous weapon system)
 - Subsystem autonomy levels up to 5 even necessary (!) as i.e. user input to arming is prohibited by AOP-4187
 - Examples of qualified highly autonomous weapon systems:

Autonom

everal functio

Few functions ar

Level 3

jor functions a

The UAV is able to make decisions

Level 5

Full autom No Pilo

Level 4

- Determination of a *red line* between airworthiness and nonairworthiness certified systems
 - Basic LM without airworthiness certification should have missile like conops
 - Complex LM with have capabilities that make airworthiness cert. mandatory to ensure safe operation
 - The grey zone between
 - Retrievable and indirectly reusable systems (refurbished by manufacturer)
 - Interchangeable lethal payloads (warhead variants)
 - Training and exercise units (depending on national policy)
 - Safe-passage capable systems with non-hazardous airframes
 - Air-launched *basic* LM systems
 - ...

- The variety of munitions make a clear terminology picture necessary for meaningful discussions
- No agreed categorization system for loitering munitions exists, which prevents a standardized approach to safety and suitability for service (S3) assessments
- Promulgated NATO standards (based on the AAS3P-Series) can serve as framework for basic LM S3 programs
 - Special safety issues (i.e. fuzing and software safety) need to be addressed properly by the application of appropriate standards (most crucial: System Safety)
 - AAS3P-1.1 SRD (in drafting) will cover those specific topics
- Larger, more complex systems require larger, more complex S3 programs...
 - AAS3P-XX, AOP-4187 (or -67 in the future) and IEC 61508 (or DO...) still apply Basic framework applicable but too limited for complex LM
 - Additional assessments regarding LM specific capabilities (reusability, modular payloads, air traffic deconflicting, ...) necessary. The variety and uncertainty of LCEPs will drive the test efforts.

Supporting Munitions Safety

Thank you for your attention

